
2023/09/21 10:50 1/11 Model Definition (.mdl)

Transport Fever 2 Wiki - http://www.transportfever2.com/wiki/

Model Definition (.mdl)

Models are stored in the .mdl format in the res\models\model\ folder. The format consists of
geometric information for different levels of detail (LODs) and metadata. For each LOD, there is a
separate hierarchy of meshes with their animations, events, and materials. In general, .mdl files
contain a data()-function that returns a struct similar to the one below:

function data()
return {
 boundingInfo = { ... }, -- optional bounding box used e.g. for render
borders
 collider = { ... }, -- optional collider for collision calculation
 lods = { ... }, -- geometric information for 3D data and textures
 metadata = { ... }, -- metadata depending on model type
 version = 1, -- new Transport Fever 2 lod tree format
}
end

Bounding Box

The bounding box is a cuboid that encloses the outermost elements of the model so that all parts of
the model lie within the box. It is used, for example, to decide whether an object is within the visible
range of the camera or not.

 boundingInfo = {
 bbMax = { <+x>, <+y>, <+z>, },
 bbMin = { <-x>, <-y>, <-z>, },
 },

The values are the distances from model origin in positive and negative direction on all three axis.

Collider

The collider is used whenever the potential collision between models is considered. It's possible to use
the mesh data for collision calculation as well as define the collision boundaries by script.

Collider from Mesh

When the mesh data should be used for collision calculation, the type “MESH” is needed:

 collider = {
 params = { },
 transf = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, },
 type = "MESH",

Last update: 2023/07/25 12:00 modding:resourcetypes:mdl http://www.transportfever2.com/wiki/doku.php?id=modding:resourcetypes:mdl

http://www.transportfever2.com/wiki/ Printed on 2023/09/21 10:50

 },

Collider from script

When the boundaries should be set by script, the type “BOX”, “CYLINDER” or “POINT_CLOUD”
is needed:

 collider = {
 params = {
 halfExtents = { 1.5, 1.5, 1.5, },
 },
 transf = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, },
 type = "BOX",
 },

The size of the volume is specified by 2 times the halfExtents properties for the “BOX” and “
CYLINDER” type. It can be offsetted relative to the model origin with the transf parameter. The “
POINT_CLOUD” uses a list of points that is provided in the points parameter. Each point has three
values for the position on all three axis relative to the construction origin. The transf parameter is
ignored.

Level of Detail

Levels of detail (LOD) are used to use simplified geometries with less tris as the distance between
model and camera increases, thus saving computing power during rendering. At least one LOD is
needed, but it is recommended to include more if the model has a large number of tris.

 lods = {
 {
 node = { ... }
 static = false,
 visibleFrom = 0,
 visibleTo = 200,
 },
 ...
 },

The node element is the top level of the mesh hierarchy in this LOD. The range of visibility is limited
by visibleFrom and visibleTo .

Mesh hierarchy

The hierarchy is defined by nesting of nodes. The root node is the toplevel parent node.

2023/09/21 10:50 3/11 Model Definition (.mdl)

Transport Fever 2 Wiki - http://www.transportfever2.com/wiki/

Nodes

A node can have the following attributes:

 {
 children = { ... }, -- optional, contains more nodes
 transf = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, }, --
transformation matrix for size, ...
 animations = { ... } -- optional, for details see below
 mesh = "path/to/mesh.msh" -- optional, relative to res/models/
mesh/
 materials = { ... } -- needed if mesh is used, for details see below
 name = "mesh_01" -- optional, can be used as reference elsewhere
 }

Animations

The animations block contains a list of animations with eventnames as keys. Each of these animations
is either defined by keyframes or file based.

Example code for a keyframe and a file based animation:

 animations = {
 eventname1 = {
 forward = true, -- or false for inverse keyframe playback
 params = {
 keyframes = {
 {
 rot = { 0, 0, 0, }, -- rotation around all three axis
 time = 0, -- milliseconds since begin of animation
 transl = { 0, 0, 0, }, -- position offset for all three axis
 },
 ...
 {
 rot = { 0, 0, 0, },
 time = 1200,
 transl = { 0.75, 0.055, 0, },
 },
 },
 origin = { 0, 0, 0, }, -- offset of animation origin from node
origin
 },
 type = "KEYFRAME",
 },
 eventname2 = {
 params = {
 id = "path/to/animation.ani", -- relative to res/models/
animation/
 },

Last update: 2023/07/25 12:00 modding:resourcetypes:mdl http://www.transportfever2.com/wiki/doku.php?id=modding:resourcetypes:mdl

http://www.transportfever2.com/wiki/ Printed on 2023/09/21 10:50

 type = "FILE_REF",
 },
 },

Further information on animation files can be found in the animation section.

Meshes and Materials

Nodes can contain a mesh. Meshes consist of two files, meshname.msh with index information and
meshname.msh.blob with 3D model data (binary). See the documentation of msh files for further
information on meshes.

For each submesh provided by the referenced .msh file, a material has to be referenced.

 materials = {
 "path/to/material.mtl", -- paths relative to res/models/material/
 "path/to/secondMaterial.mtl",
 ...
 }

Further details about material files and types can be found in the material documentation.

Metadata

There is large set of metadata keys to describe all the different types of models in the game. Some of
the keys can be used for almost every type of model. These are described below. For specific model
types, the keys are described in the relevant sections of the wiki:

Vehicles
Waypoints and Signals
Landscape Assets (Trees and Rocks)
Animals
People

Universal Keys

These metadata keys can be applied to any or the majority of model types. Depending on the
resource type, they might be mandatory, but can often be left empty to default to zero.

description
availability
cost
maintenance
particleSystem
cameraConfig
labelList
transportNetworkProvider

http://www.transportfever2.com/wiki/doku.php?id=modding:resourcetypes#ani_for_extracted_animations
http://www.transportfever2.com/wiki/doku.php?id=modding:resourcetypes:msh
http://www.transportfever2.com/wiki/doku.php?id=modding:resourcetypes:mtl
http://www.transportfever2.com/wiki/doku.php?id=modding:vehiclebasics
http://www.transportfever2.com/wiki/doku.php?id=modding:waypointssignals
http://www.transportfever2.com/wiki/doku.php?id=modding:landscapeassets
http://www.transportfever2.com/wiki/doku.php?id=modding:animals
http://www.transportfever2.com/wiki/doku.php?id=modding:people

2023/09/21 10:50 5/11 Model Definition (.mdl)

Transport Fever 2 Wiki - http://www.transportfever2.com/wiki/

Description

The description provides the name and a descriptive text for the model. It is used for vehicle
informations in buy menu and status windows. Static models that are not part of a construction use it
for the label in the menu. In constructions, these information are not used.

 description = {
 name = _("Name of Model"),
 description = _("Description displayed for example in the depot menu")
 },

Availability

The availability defines the timespan in which the model is available. yearFrom and/or yearTo can
be left out or set to zero to define an indefinite start respectively end year.

 availability = {
 yearFrom = 1925,
 yearTo = 1985
 },

Cost

To activate automatic price calculation, set the price to -1. When price is left out, it defaults to 0.
The value of priceScale can be used to adjust the calculated price. This is a hook up point for
balancing mods too.

 cost = {
 price = 10000,
 priceScale = 1
 },

Maintenance

To activate automatic maintenance calculation, set the running cost to -1. When runningCost or
lifespan is left out, it defaults to 0. The value of priceScale can be used to adjust the calculated
price. This is a hook up point for balancing mods too.

 maintenance = {
 runningCosts = -1,
 runningCostScale = 1,
 lifespan = 40 * 730 -- [1 unit at normal game speed corresponds to
12h, a year equals lifespan = 730]
 },

Last update: 2023/07/25 12:00 modding:resourcetypes:mdl http://www.transportfever2.com/wiki/doku.php?id=modding:resourcetypes:mdl

http://www.transportfever2.com/wiki/ Printed on 2023/09/21 10:50

ParticleSystem

Particle emitters produce smoke or steam particles.

 particleSystem = {
 emitters = {
 {
 child = 1,
 position = { 4.3632001876831, 0, 3.8589000701904, },
 color = { 0.35, 0.35, 0.35, },
 frequency = 80,
 lifeTime = 14,
 size01 = { 0.80000001192093, 1, },
 velocity = { 0, 0, 10, },
 initialAlpha = 0.8,
 velocityDampingFactor = 2.0,
 },
 ...
 },
 },

A model can have zero or more particle emitters. Each of the emitters has its own block in the
emitters list. It has several properties:

child is the id of the node that should be used as origin for the positioning of the emitter.
position is a vector relative to the origin of the mesh anchor.
color is a color definition for r g and b values. Currently, only greyscale particles are possible!
frequency is the number of particles emitted per second. Keep in mind that larger values
reduce performance.
lifeTime is the duration of a particle in seconds. Keep in mind that larger values reduce
performance.
size01 is the size of the particle in meter at the beginning and end of its lifetime.
velocity is the drifting speed in all three directions relative to the emitter.
velocityDampingFactor is the factor by which the particle velocity, defined by the
velocity parameter, is dampened. Default is 2.5. The velocityDampingFactor does not
affect the wind velocity a particle has.
initialAlpha is the initial opacity of the particle. Default is 1.0. 1.0 means particle is fully
visible, 0.0 means particle is fully transparent.

Particles are supported for all vehicle types as well as static construction models support the particle
emitters.

CameraConfig

By default vehicles, animals and people have an onboard camera that is relative to the node with the
first crew seat or if no crew member is available, it is relative to the position and rotation of node 0.
The cameraConfig allows for setting multiple custom camera positions, which can be cycled when
the onboard camera is active.

2023/09/21 10:50 7/11 Model Definition (.mdl)

Transport Fever 2 Wiki - http://www.transportfever2.com/wiki/

 cameraConfig = {
 positions = {
 {
 group = 0,
 transf = transf.rotYCntTransl(math.rad(25), vec3.new(0, 0, 0),
vec3.new(-15, 0, 9)),
 fov = 90
 }
 }
 }

For every camera position, there is a block in the positions list with several parameters:

group is the id of the mesh that should be used as origin for the positioning of the camera.
transf is the transformation matrix that is used for the positioning and rotation relative to the
origin.
fov is the field of view. Larger values result in wide angle views, narrow views can be done with
smaller fov values.

Label List

In Transport Fever 2, vehicles and constructions may display some dynamic text labels. These are
defined in a labelList block in the model metadata which contains a labels list:

 ..
 labelList = {
 labels = {
 {
 type = "LINE_NAME",
 transf = { 0, -1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, -5.8043 , 0.1814,
2.808 , 1, },
 size = { 0.366, 0.210 },
 color = {247 / 255, 147 / 255, 33 /255},
 fitting = "CUT",
 alignment = "CENTER",
 filter = "NUMBER",
 renderMode = "EMISSIVE",
 childId = "RootNode",
 },
 ...
 },
 },
 ..

There are many different properties which can be used to define the labels.

To set the position of the label, use the transf property pointing to the coordinates where the lower
left corner of the label should be. The label will be placed aligned to the X and Z axis. The coordinates
are relative to the mesh that is referenced in childID by name.

Last update: 2023/07/25 12:00 modding:resourcetypes:mdl http://www.transportfever2.com/wiki/doku.php?id=modding:resourcetypes:mdl

http://www.transportfever2.com/wiki/ Printed on 2023/09/21 10:50

The size contains a pair of two values. The first for the size in x direction, the second for the size in y
direction, both relative to the transf. Negative values will result in no text visible. The y direction is
used for the fontsize too. To use the label with more than one line of text, set nLines to a value
larger than 1. Values below 1 are ignored.

Coloring the text is possible by using the color attribute. It receives a vector with three values, one
for each color in the range between 0 and 1. The transparency of the text is set by alpha. Value 0 is
invisible, value 1 is opaque, values greater than 1 might lead to artifacts. With the alphaMode, it is
possible to define how the alphablending is done. Possible values are either “CUTOUT”, “BLEND” or
“NONE”. In Front of opaque textures, this might be irrelevant, but on transparent faces like glass
panes it might be more relevant. To get emissive text (like with LCD destination displays), set the
renderMode to “EMISSIVE”, otherwise set it to “STD”.

The horizontal alignment of the text can be set in alignment with the values “LEFT”, “CENTER”
and “RIGHT”. For the vertical alignment, set verticalAlignment either to “BOTTOM”, “CENTER”
or “TOP”.

To adjust the behavior of text that is longer than the label, set fitting either to:

“NONE” to let it overflow.
“CUT” to cut excessive text.
“SCALE” to scale down until it fits in the horizontal size.

The type property contains one of the following keys:

“NONE” is applicable to all models and shows nothing.
“LINE_NAME” is applicable to vehicles and shows the name of the line that the vehicle is
currently on.
“NEXT_STOP” is applicable to vehicles and shows the name of the next stop of the vehicle.
“NAME” is applicable to any model and shows the name of the entity (vehicle, construction, …).
“COMPANY_NAME” is applicable to any model and shows the name of the company.
“STATION_NAME” is applicable to any station model and shows the station name.
“CUSTOM” shows some custom content based on a labelText property in the construction.

The filter property is used to filter the input from the type. It can either be set to NONE to not filter,
NUMBER to filter anything that is no number or CUSTOM to set advanced filters in the params block. It
contains advanced parameters to influence the text that should be displayed:

expr is a regular expression that can be used to filter the input string, e.g. to only show text or
some letters. If the regular expression does not match, no text is displayed. To test some
regular expressions, you may use online tools like regex101.com.
replace can contain a gap text that has placeholders which are replaced by the contents or
parts of the string matching the regular expression above. \\0 is replaced by the part of the
string that matches the complete regular expression, \\<number n> is replaced by the part of
the string that matches the content of the nth (…) bracket pair in the regular expression.
offset can be used together with type = “NEXT_STOP” to display a stop further down the
line.
relative = false is used together with type = “NEXT_STOP” to start from the first
station of the list (+offset). With relative = true the vehicles next stop is considered
instead of the first stop.

The font parameter currently only supports the vanilla fonts Lato and Noto. Other fonts than the

https://www.gnu.org/software/sed/manual/html_node/Regular-Expressions.html
https://regex101.com/

2023/09/21 10:50 9/11 Model Definition (.mdl)

Transport Fever 2 Wiki - http://www.transportfever2.com/wiki/

standard ones lead to crashes.

It is recommended to test the labels with the model editor.

Transport Network Provider

Models (except vehicles) can contain lanes and terminals for vehicles, cargo and people. These are
configured in the transportNetworkProvider metadata block of the model.

The transportNetworkProvider contains three different properties:

laneLists for vehicle and passenger lane definitions
runways for feeding in and out ships and airplanes into the fixed lanes.
terminals for passenger and cargo terminals along the vehicle lanes.

transportNetworkProvider = {
 laneLists = {
 {
 linkable = false,
 nodes = {
 { { 0, -20, -2.1, }, { 0, 20, 0, }, 30, },
 { { 0, 0, -2.1, }, { 0, 20, 0, }, 30, },

 { { 0, 0, -2.1, }, { 0, 20, 0, }, 30, },
 { { 0, 20, -2.1, }, { 0, 20, 0, }, 30, },
 },
 speedLimit = 20,
 transportModes = { "SHIP", "SMALL_SHIP" },
 },
 ...
 },
 runways = {
 {
 edges = { 0, },
 node = 0,
 type = "LANDING",
 },
 {
 edges = { 1, },
 node = 3,
 type = "TAKEOFF",
 },
 },
 terminals = {
 {
 order = 0,
 personEdges = { 2, 3, },
 personNodes = { 5, 8, },
 vehicleNode = 2,
 },

http://www.transportfever2.com/wiki/doku.php?id=modding:modeleditor

Last update: 2023/07/25 12:00 modding:resourcetypes:mdl http://www.transportfever2.com/wiki/doku.php?id=modding:resourcetypes:mdl

http://www.transportfever2.com/wiki/ Printed on 2023/09/21 10:50

 },
},

The laneLists is a list of blocks which have several properties each:

linkable is a boolean value that decides if the lane can be targeted by the small
automatically generated footpath links.
nodes is a list of nodes which are used to define the edges. Every two nodes form one edge.
Each node has three properties:

The coordinate relative to the model origin.1.
The tangent at the node position. Please note that the length of the vector must be equal2.
to the length of the edge. Otherwise negative side effects like compression and stretching
of vehicles may occur.
The width of the edge. It is only used for the capacity calculation.3.

speedLimit is the maximum speed on all edges defined by the nodes above.
transportModes is a list of allowed modes on the edges defined by the nodes above. Possible
values are “PERSON”, “CARGO”, “CAR”, “BUS”, “TRUCK”, “TRAM”, “ELECTRIC_TRAM”,
“TRAIN”, “ELECTRIC_TRAIN”, “AIRCRAFT”, “SHIP”, “SMALL_AIRCRAFT”and
“SMALL_SHIP”.

The nodes can be referenced with their index over all lists. The edge 0 is defined by node 0 and 1,
edge 1 is defined by node 2 and 3, edge n is defined by node 2×n and 2×n+1.

The runways block contains 0 or more runway blocks which have several properties related to the
entry and exit points of the freely moving planes and ships:

edges is a list of edges from the laneLists that should count to the runway.
node is the point where the vehicle is slowed down after landing or starting speedup for takeoff.
It must not lay in the middle of the edges list.
type is either “LANDING” or “TAKEOFF” depending on the type of runway.

An aircraft tries to land and slow down in front of the landing node. After passing it, it will taxi to the
terminal. On departure, it will speed up and take off after passing the takeoff node. The
landing/takeoff direction is given by the tangent of the first/last edge in the edges list. If the runway
is not longSame holds for ships.

The terminals block contains a list of terminal definition. At a terminal, cargo items and passengers
can enter and leave vehicles. Each terminal block contains the following parameters:

order is used for the enumeration of terminals in the user interface. The first terminal (order
= 0) in the first model of the station with terminals is terminal number 1, …
personEdges are edges which are used as waiting zones for passengers and cargo items.
There the passengers or cargo items will wait in idle mode until the vehicle arrives. The lenght
and width of these lanes is used for the capacity calculation. These edges need to support the
right mode (either “PERSON” or “CARGO”).
personNodes are the nodes where passengers that alight of vehicles spawn in the station.
From there they walk to the station exit or to a personEdge for the next vehicle to take. The
invisible cargo items do the same. These nodes need to be on “PERSON” or “CARGO” edges.
vehicleNode is the node where the vehicle stops. It depends on the vehicle type whether the
front or middle of the vehicle exactly stops there. This node needs to be on an edge that
support vehicles.

2023/09/21 10:50 11/11 Model Definition (.mdl)

Transport Fever 2 Wiki - http://www.transportfever2.com/wiki/

Mesh Definition (.msh/.msh.blob)

From:
http://www.transportfever2.com/wiki/ - Transport Fever 2 Wiki

Permanent link:
http://www.transportfever2.com/wiki/doku.php?id=modding:resourcetypes:mdl

Last update: 2023/07/25 12:00

http://www.transportfever2.com/wiki/doku.php?id=modding:resourcetypes:msh
http://www.transportfever2.com/wiki/
http://www.transportfever2.com/wiki/doku.php?id=modding:resourcetypes:mdl

	Model Definition (.mdl)
	Bounding Box
	Collider
	Collider from Mesh
	Collider from script

	Level of Detail
	Mesh hierarchy
	Nodes
	Animations
	Meshes and Materials

	Metadata
	Universal Keys
	Description
	Availability
	Cost
	Maintenance
	ParticleSystem
	CameraConfig
	Label List
	Transport Network Provider

